
https://www.nutanix.com/en

0101

0202

0303

0404

0505

0606

0707

0808

0909

1010

The Monolith in Production 6

Separate, Monolithic Functions 7

Load Balancing for Uptime 8

Application Automation and Orchestration 11

Synthesis with Scripting: Push Button Environments 12

Configuration Management: Shell Scripting on Steroids 14

Creating Build-Time Infrastructure Artifacts 16

Continuous Infrastructure Integration, Delivery,
Deployment, and Operations 18

Enterprise, Hybrid, and Multicloud Deployments 21

Heuristic-Driven Operations 23

3 FROM PETS TO HERDS,
 BESPOKE TO EPHEMERAL

5 ZERO TO DEVOPS:
 THE 10 STEPS

Deconstructing the Workload “Lift and Shift” Trap 11

Ready to Become an Infrastructure Developer? 24

3

DevOps is a powerful methodology that enables businesses to deliver better quality
products and services to customers, both faster and at a lower cost. It achieves these
benefits by radically departing from traditional IT service delivery processes. To make
the DevOps transformation more easily understood, this eBook presents 10 steps
describing the move from a highly traditional, siloed, and “monolithic” IT organization
to continuous enterprise cloud deployment and true hybrid cloud facility.

Decades of habits and traditions can make it difficult to see alternative strategies for
solving problems, especially when there’s significant risk involved. Until fairly recently,
it’s been taken as a given that medium to large companies organized themselves into
separate silos of functional expertise and responsibilities, with projects following a
linear “waterfall” process. But legacy approaches have proven not only slow, inefficient,
and costly, they also lead to buggy, substandard products that disappoint customers
(or worse) and wreak havoc on the production environment. These shortcomings
have become even more glaring with the advent of virtualization, distributed systems,
and cloud computing. The search for agility has prompted some to go “all-in” on
public cloud, but for most workloads, this is an extremely expensive way of doing
business (as borne out by monthly sticker shock) and can end up being another
form of vendor lock-in.

A reasonable person might ask, why do companies need DevOps when IT and
Operations are successfully delivering security and uptime, using administrative
tools to maintain, backup, and restore those systems? The answer is that if Operations
is ever going to become a force multiplier that helps the business drive innovation,
instead of a cost center whose primary function is to keep the lights on, it must
become agile. For this to happen, Operations must be documented, democratized,
and distributed.

FROM PETS TO HERDS, BESPOKE TO EPHEMERAL

4

The traditional values and practices for creating stable, long-
lasting infrastructure do not apply when progressing to a DevOps
mindset. IT infrastructure resources, both technological and
human, have long been treated as unique and special--that
is, treated like irreplaceable and extremely valuable “pets.”
For example, most IT shops rely on servers that are bespoke
(custom built) and maintained laboriously by hand. But these
resources also constitute single points of failure that, when
unavailable, can bring a mission-critical application, or even
an entire organization, to its knees.

Conversely, DevOps requires that your material resources be
distributed, fungible, and ephemeral. When one resource goes
down, another takes its place without any disruption to the
business. Technical resources like servers are more like members
of a “herd” or fleet--one is as good as another. In terms of
staffing, DevOps also democratizes required skill sets, so that
the company is not dangerously reliant on any single “heroic”
resource. The overall system should be smart enough so that
no single employee possesses such specialized knowledge that
their absence would significantly interrupt the flow of work.
DevOps also dictates that, whenever possible, businesses
should automate menial, error-prone, and repeatable tasks,
freeing staff to devote their time and energy towards work
that brings real value to the business.

5

Zero to DevOps:
The 10 Steps
For our model environment, we will explore, deconstruct, and
rebuild a typical web application to cloud-like web scalability.

Our scenario starts with a bare-metal web application hosted
on a Windows server, with Internet Information Services (IIS)
(an extensible web server) and MS-SQL database. To minimize
the variables, our example focuses exclusively on application
infrastructure (a SAN or backup system target is out of scope).

Throughout the discussion, we posit a mythical, relative value
of X as a unit of work and time, designated as 3 hours.

0101

6

THE MONOLITH IN PRODUCTION

The journey begins with a hand-built prototype consisting of a web and data-
base on a single server in a single datacenter. All updates happen in production.
Restoring from backups are the only means to remediate the entire state of
the application, configuration, data, and server. While there are many simple
operational workarounds and procedures that can mitigate small problems,
the application and infrastructure remain a monolith. There is a single point
of failure for everything (architecture, operations, application, and updates),
which precludes collaboration without the risk making easy but consequential
mistakes. All single points of failure must be removed to progress from this
stage toward scalability.

Design:
• A single server, hosting the entire application: OS + web + DB

Build and Deploy: 1X
• Built by hand

MTTR (Mean Time To Repair): 0.5X
• Repair is a restoral, estimated at 0.5 build and deploy time

Benefits:
• Easy to backup, but requires application downtime

Disadvantages:
• A single point of failure on every infrastructure
 and application tier

• A single point of failure environment: no staging

• A single point of failure datacenter:
 no disaster recovery

• Downtime requires human
 intervention to restore

0202

7

SEPARATE, MONOLITHIC FUNCTIONS

The first step is to take the prototypical application and infra-
structure apart. By separating the monolith into two parts, where
each part has its own functional domain (web or database),
the amount of work doubles. However, this work lays the founda-
tion for isolating failure and distributing risk--one move away
from the situation where any fault affects the entire system.

Design:
• Two servers in production:
 – Web hosts the application: OS + web
 – Database hosts the data: OS + DB

Build and Deploy: 1X
• Built by hand, thus little parallel OS installation time savings

MTTR: 0.5X
• Repair is a restoral, estimated at half the build and
 deploy time of this step

Benefits:
• Separation of each application function allows better manage-

ment of each concern. There are two servers--if one goes
down, the remediation scope is smaller than both database
and web combined. The whole app is effectively down,

 but not all of the app is impacted.

• Easier to backup web without downtime

• Remediate Stage 1 disadvantage: if web node is down,
 DB is not, and vice-versa

• Minor MTTR decrease for restoral

Disadvantages:
• Each host remains a single point of failure

• Twice the time to maintain, twice the attack surface,
 twice the OS license cost

• Database maintenance still requires application downtime

0303

8

LOAD BALANCING FOR UPTIME

The next step doubles the web and database server count into
their respective tiers, and introduces a web load balancer. This
breaks the direct sequence of dependencies between the web
and database tiers. It allows updates on one instance, while the
other handles double the demand during the maintenance
window and preserves uptime for the application.

A further security refinement would be to place a demilitarized
zone (DMZ) firewall between the web and database tiers,
cutting off direct access and attacks to the database.

Design:
• Five servers:
 – Load balancer for the web tier, modeled with IIS Web Farm

as a reverse proxy
 – Web tier: 2* web hosts the application: OS + web
 – Database: 2* database hosts the data: OS + DB

Build and Deploy: 6X
• 4X: Built by hand, so little parallel OS installation time savings

• 1X: Increased time to configure Master+Minion database

• 1X: Increased time to configure OS firewalls, web proxy

MTTR: 3X
• Repair is a restoral, estimated at half the build and
 deploy time of this step

Benefits:
• A single server in the web tier can fail or be maintained

without application downtime

• In theory, a master and minion database can be
 maintained without downtime

• Potential 2x increased capacity for web and DB

• Application read traffic can be directed to minion to
 reduce load on master

• Reduced network attack surface:

• Web-tier OS firewall can restrict public access to load balancer

• Database OS firewall can restrict access to web-tier servers

Disadvantages:
• Load balancer is a single point of failure

• 5x the time to maintain; 5x OS license cost;
 2x DB license costs

• MTTR is larger

• Increased complexity to troubleshoot network

• No DMZ network for further isolation

9

The most common strategy for migrating workloads among data-
centers, infrastructure providers, hypervisors, clouds (or even from
physical to virtual machine, or from virtual machine to container)
is through a storage conversion. This strategy is often called “lift
and shift,” because it represents the equivalent of a fork-load
uplift of the entire captured state of the machine--moving the
disk image (and any potential conversion) and dropping it off
at the new destination to compalete reinstantiation.

“Lift and shift” is the easiest strategy to adopt because it can be
accomplished with backup and restoral procedures and tooling.
Most IT practitioners are familiar with this process given that,

1. There is an entire industry dedicated to storage backups.

2. Backup and restoral should be a standard operation for most
IT organizations.

3. Backups are often a component for disaster recovery, which
 is another critical facility for IT organizations.

However, when used as a migration strategy, storage backup and
restoral is limited to destination environments that are practically
identical to the source environment. In essence, the only difference
is location, because you want to preserve all other infrastructure
characteristics to guarantee that workloads can run without further
alteration in the destination environment. Even with minimal diffe-
rence at the destination, there are many constraints that prevent
a workload from running, including hard-coded dependencies
on external service requirements (for example, DNS naming, IP
addresses, network routes, firewalls, and VLANs, software and
operating system licensing enablement). Furthermore, applica-
tions with hard-coded configurations may also pose a barrier
if there is no software maintenance, lost source code and build

environments, and programming skill sets for legacy applications.
These dependencies and constraints represent additional opera-
tional overhead, unrecognized technical debt, and a pet mentality
that blocks migration to other infrastructures.

Finally, the additional organizational overhead of maintaining an
inventory of storage backups and their lifecycle (from near-line
secondary storage to distant and off-line archival retrieval) is
costly for these large backup files, even when outsourced.

Migrating workloads among different providers is a common yet
onerous new requirement, especially when an organization has a
“cloud-first” initiative.The second stage of the lift and shift strategy
includes several time-consuming steps:

• Fulfill secure network transfer requirements between destinations

• Convert each workload’s backup to the destination provider
virtual machine format

• Transfer and provision the workload in the new provider.

Combining multiple workloads of large backup files over the net-
work with conversion and downtime considerations, in addition
to all of the previously mentioned operational overhead to remedy
pet dependencies, may be an unacceptable amount of risk, cost,
and disruption to the business. As a result of these hardships,
many organizations are reconsidering “cloud first,“ moving
instead to “cloud smart” to rationalize workload migration.

The ultimate issue with a lift and shift strategy is that it is a large,
complex state transfer that entails the entire operational effort
and history to maintain the workload up to the date of the snap-
shot or backup. The backup preserves every undocumented

DECONSTRUCTING THE WORKLOAD
“LIFT AND SHIFT” TRAP

10

change control and pet operation done by hand, such as adjust
ments to the operating system, application, and server configu-
ration, security updates, and patches. Of course, any undetected
nefarious, bad practices, or temporary and accidental changes,
are also preserved and these changes are compounded over the
lifecycle of years for a typical workload. Without extreme diligence
in tooling and audits for change control operations, the state of
the workload is unknowable. A large auditing industry exists around
business documentation and enforcement of operational proce-
dures for change, but short of a disaster recovery event, no audit
can empirically test and validate those procedures.

Most IT organizations face an uncomfortable truth: disaster re-
covery is hard to achieve and expensive to operate. Most businesses
end up relying on snap-shot cloning or backup restoral, which
always incur the debt and history of their operational legacy.

Reproducing every historical operation and change from scratch
is extremely burdensome, potentially incurring even more down-
time than the second stage “lift and shift” strategy. Most IT organi-
zations rely on a single approach for business continuity, one
that involves large, complex state backups that contain unrepro-
ducible operations. Worst of all, this approach locks the business
into the incumbent infrastructure providers who have no incentive
to remove this constraint. Consequently, most IT organizations
are trapped by their traditional tooling, vendors, and methods
to solve the problem of how to run their business in a robust
fashion.

The “cloud first” mantra of lifting and shifting workloads to the
public cloud has often led to operational expenditure overspend.
The unfortunate outcome can be an embarrassing second lift
and shift back to on-premise facilities after a re-evaluation of
cloud strategy. According to NIST Special Publication 800-145,
cloud is multimodal in terms of characteristics, consumption,
and operation. This perspective underwrites the United States
Federal Cloud Strategy, which calls for a “cloud smart” rather
than “cloud first” strategy. Simply put, application rationalization
requires that you determine the proper cloud model for opera-
tion, which in turn calls for a mature hybrid-cloud with blended
capital and operational expenditure outcomes.

Escaping the lift and shift trap requires paying down technical
debt and adopting a new approach that confers the following
strategic advantages:

1. Reproducibility: synthesizes workloads from scratch,
 shedding legacy and historical operations

2. Portability: instantiates the same workload on multiple
providers, thereby achieving cloud smart initiatives

3. Consistency: facilitates testing and rollout of best practices,
 security patches, updates, and new facilities

4. Automation: combines reproducible, consistent operations
with workload portability. Automation constantly improves
the state of the business while also accelerating time to
market, improving resource management efficiency.

IT is now evolving toward codifying infrastructure and operations
and applying software engineering disciplines, which should
make resource governance and audits implicit. DevOps encom-
passes the methods and cultural values required to achieve this
transformation.

https://csrc.nist.gov/publications/detail/sp/800-145/final
https://cloud.cio.gov/strategy/
https://cloud.cio.gov/strategy/

0404

11

APPLICATION AUTOMATION AND ORCHESTRATION

This is where the transition from physical to virtual (P2V) begins.
With the right tools, you can now automate and orchestrate the
provisioning and deployment of your applications. State of the
art automation tools can model business across application
topology, orchestration dependencies, infrastructure configura-
tion, and lifecycle operations. A common industry term for this
business automation model is a “blueprint.”

Document your current production deployment by modeling
“brownfield,” existing servers in a blueprint. Be sure that the
blueprint documents lifecycle-orchestrated operations for every
change control or runbook procedure (including, for example,
backups, restorals, or an OS upgrade). Adopt role-based access
control (RBAC) definitions to enable delegation of application
deployment, including audits to delegate operations. Maintain
blueprints with software revision control to ensure no loss to
documented operations and infrastructure.

Stage 4 moves you away from hand-built provisioning of infra-
structure and toward repeatable, no-error server deployment.
It puts you on the road to infrastructure as code and marks
the transition to becoming a developer: programming ahead!

Stage four is where an organization’s DevOps journey really
begins, as it breaks away from the “lift and shift” trap.

Design: a translation of stage 3
• 5 servers, brownfield imported

Deploy: 1X
• Using the Deploy estimate from the previous stage (6X),

estimating automation to cut down on manual operations and
human error at 33% savings, then parallelization at half of that.

• (6X/3)/2 = 1X, meaning we get 6 times the amount of work
done as the original build and deploy work unit amount in
stage 1.

Development: 4X
• 2X: Learning and bootstrapping an orchestration automation

tool.

• 1X: Initial blueprint development time.

• 1X: Minimal because brownfield import, then adding actions
for each documented change control or runbook operations.
Should be cut and paste, with relatively little variable or macro
substitution and minimal orchestration. Another huge step
toward efficiency and automation.

MTTR: 0.5X
• Repair is a restoral, estimated at half the deploy time of this

step.

Benefits:
• Documented production

• Added maintenance operations, can be delegated and audited
 under RBAC

Disadvantage:
• Still relatively rudimentary

THE TURNING POINT: WHAT’S AHEAD?
• Aspire towards creating push button, separate environment

deployments. At this stage, however, still relying on the legacy
approach of restoring in parallel and localizing through clones
and snapshots. This will be stage 5.

• Add a revision control service. Paves the way to continuous
integration of blueprints, infrastructure, and applications.

 This will be stage 8.

• Adding monitoring, metrics, and logs allows you to heuristically
trigger these operations: this improvement moves towards
zero-click operations, and the ideal of a self-healing, anti-

 fragile business. This will be stage 10.

0505

12

SYNTHESIS WITH SCRIPTING:
PUSH BUTTON ENVIRONMENTS

The goal of this stage is to change your brownfield, existing
workloads (which have a lot of hard-coded configuration, data,
and state in them) to push-button simplicity for new workload
instances. How often does your software development and test
team ask for a new environment and then wait around for days
and weeks for IT to manually fulfill the requests? Nobody can
afford to have developers wait to become productive anymore.
With the advent of continuous integration, the demand for a
new environment could happen with every developer check-in,
multiple times per hour.

Cloning a VM template and powering on a new copy requires
reconfiguration. Doing this manually for multiple VMs (for a
database, a web server, a load balancer, etc.) is labor intensive
and time consuming due to the existing state of each VM,
which requires considerable reconfiguration and clean up.

Using the brownfield blueprint as a starting point, you can create
parallel instances of each VM and have it provisioned from scratch
with a fresh template or operating system image, removing any
pre-existing state and ensuring a pristine environment that is
fully reproducible. You can also make the reconfiguration steps
you performed by hand on the brownfield VMs into procedures
to compose the newly provisioned VMs. There may be a need
for external sources of configuration and data; we address this
topic in the next stage with configuration management.

Once you have the ability to create the application VMs in parallel
to the brownfield VMs, you can delete the brownfield VMs from
the blueprint. What remains is a push-button application environ-
ment that you can delegate to end-users--not unlike the Apple
App Store or Google Play Store. It is easy to create a new environ-
ment for your workloads to test new procedures, code, configu-
ration, and operational changes, as well as OS and security
updates and patches before working in production.

Another important refinement at this stage is to change hard-
coded configuration information into variables that are determined
at runtime, sourced eitherfrom external systems or your end-users.

Perhaps the most important achievement would be the transition
from modeling each individual member (pet) and reorganizing
them into appropriate tiers (herd) that can scale-in and scale-out.
In other words, in lieu of two individual, pet web servers, you have
a web-tier of servers that is initially deployed as a fleet (herd)
population of two. This change, combined with variable con-
figuration, provides the pivotal gateway to scalability.

This shift also requires orchestration, which coordinates the
order of operations across the entire application architecture
for dependencies. For example, the database must be created,
configured, loaded with data, and ready before the web tier
can connect to it.

13

The development and testing of this stage is 10x the original
work unit, because it represents paying off technical debt to
achieve a basic level of automation. For many, it is culturally
unacceptable to devote this much time unless there is a plan
and justification of effort. Crossing this hurdle fundamentally
separates the maturity of every organization’s operating model.

Design:
• A copy of stage 4, adding a parallel, synthesized workload

with variable-driven configuration and application tiers,
followed by brownfield removal.

• 5 servers, synthesized from scratch and configured at runtime.

Build and Deploy: 1.5X
• Because of automation, parallelism, and orchestration, an

entire working environment can be holistically deployed
 in working condition.

Development: 10X
• 1X copy each brownfield VM and configure how to provision
 a new VM

• 4X post provision configuration for each new VM: load
balancer, web, and database server (hard coded).

• Test that a deployment works and polish if needed.

• 3.5X rework web server to use variable from database address
and change to a web-tier population; rework load balancer

 to use variable from web tier addresses for configuration.

• Test that deployment works and polish if needed.

• 1.5X scale-out or scale-in web-tier configuration change
 for load balancer.

• Test that deployment works and polish if needed.

MTTR: 1.5X
• Repairs change from restoral to redeployment

Benefits:
• Push-button, fleet deployment with huge savings
 in deployment time

• Scale out web-tier with automated load balancer
 reconfiguration: a runbook for lifecycle operation
 is a push-button change control.

Disadvantages:
• Requires a human to initiate a new deployment, scale-out
 the web tier, or to decommission the deployment.

• Can’t be delegated to end-users for self-service unless basic
governance is established: identity, potentially multi-tenant
Role-Based Access Controls (RBAC), resource quotas (for
CPU, memory, storage), operations audit logs, alerts, and
reporting facilities required.

• When happy with this new deployment, adding a DNS
 round robin record with the old and new load balancers
 could eliminate that single point of failure from the design,
 but it is a manual operation.

0606

14

This step may be considered optional, but mastering it can
revolutionize the approach to adopting new workloads with
automation.

Cloning the blueprint from stage 5, one can refactor Powershell
scripting to use configuration management (CM) instead. Briefly,
CM is a category of software that can be considered the next
generation of scripting. It may also be beneficial to bootstrap
from community contributions for web and database, potentially
allowing you to change operating system versions, which may
help with your workload portability. Many provisioning tools can
orchestrate configuration management on each VM guest--client-
only CM has been very popular for adopting this new ability.
The more advanced CM systems support client-server models
with change management database (CMDB) features, secure
orchestration of secrets, fleet management, and more.

Blueprints can easily bootstrap, configure, and run a configuration
management client tool. In fact, you can mix and match your
old procedures and new CM procedures, or even multiple CM
systems, inside a blueprint. This flexibility is crucial for expressing
your work using your current skill sets alongside new facilities,
while also leaving open the option to refactor for future efficiencies.
Also, given that different teams typically adopt different tools,
your system should be able to accommodate this heterogeneity
through orchestration--bringing all of the knowledge in your
organization under one roof to deliver business with a single click.

Perhaps the most interesting benefit of CM is that after the
initial provisioning and execution, periodic rerunning of CM on
each VM can identify and (if desired) remediate configuration
drift back to the desired state. This capacity constitutes one
aspect of self-healing infrastructure and is an essential tool for
establishing on-going security of your environments. (Some CM
tooling can work in a client-only mode; we assume this capacity
below for simplicity of adoption.)

The configuration management communities offer official and
community-supported workload automation, which can accelerate
new workload adoption. Once becoming comfortable with the
benefits of configuration management, CM support may become
a new requirement or qualification for any new vendor, workload,
or solution. CM can also expand to large client-server systems
to manage large fleets of datacenters and VMs.

The configuration management option has begun to wane,
however, with the onset of Docker containers and Kubernetes.
These technologies have led application architecture towards
immutable infrastructure artifacts, which are built and orches-
trated with a minimum of runtime configuration--in contrast
to entirely synthesized configuration during provisioning time
(as seen in this and the previous stage). These more lightweight
options optimize time, storage, and compute, so the next stage
begins down that path.

CONFIGURATION MANAGEMENT:
SHELL SCRIPTING ON STEROIDS

15

Design:
• A copy of stage 5, refactoring Powershell to configuration

management.

• 5 servers, synthesized from scratch and configured at runtime.

Build and Deploy: 1.5X
• Because of automation, parallelism, and orchestration an

entire working environment can be holistically deployed in
working condition.

Development: 11X
• 4X: survey the market, identify, and install a pilot CM system.
 – Test that a deployment works and polish if needed.

• 3X: identify CM community/official support for load balancer,
 web, and database.

• 3X: bootstrap CM and then refactor Powershell to load
balancer, web, and database CM or reduce Powershell to

 leverage blueprint variables and configure inputs to CM.
 – Test that a deployment works and polish if needed.

• 1X: schedule periodic CM runs for configuration drift detection

MTTR: 1.5X
• Repairs change to manual redeployment or potential CM

remediation.

Benefits:
• Increased security for configuration drift detection

• Potentially easier to change VM operating systems for
 upgrades

• Potential CM automated remediation of workloads

Disadvantages:
• Requires a human to initiate a new deployment, scale-out
 web tier, or scale-out web-tier, or to decommission the

deployment.

• Can not be delegated to end-users for self-service unless
basic governance is established: Identity, potentially multi-
tenant Role-Based Access Controls, resource quotas (for CPU,
Memory, Storage), operations audit logs, alerts, and reporting
facilities required -- requires larger client-server CM invest-
ment to potentially cover some or all of these requirements.

0707

16

This stage requires adopting a build system and creating a build
script. There can be no turning back from being an infrastructure
developer once mastering shell scripting, Infrastructure as Code,
or CM! You will adopt more of the software engineering discipline
in this stage to build your infrastructure and treat it like an
application: easy to build, test, and deploy.

The goal is to manually build and orchestrate as much as possible
into a VM template or operating system image. By doing so, you
can regularly build in operating system, application server, and
software library updates and security patches. These are infra-
structure artifacts that have been built, distributed to some file
repository, and can be provisioned quickly with a minimum of
runtime configuration, greatly speeding up development, test,
and production environments, as well as backup and scale-in
and scale-out operations.

Another refinement at this stage is to move from VMs to Docker
containers and from OS builds to application builds of software
packages. The Docker container model shortens build and deploy-
ment times (the latter down to one second), which fuels a rapid
feedback loop for development and testing. With containers
you can also reduce the build to include only the application
and its dependencies, because the operating system and most
OS utilities aren’t required to run the application. Finally, you
can redesign the build artifact container to be read-only (with
environment variables providing the configuration information),
which lets you build the container once and then re-use it for
development, testing, staging, and production environments.

Read-only (immutable) artifacts send logs, state, and transactions
over the network to other services, making it stateless and easy
to deploy and redeploy with minimal interruption. Reusing the
build artifact minimizes the deltas between environments, pre-
venting the historical need for operating procedure changes in
different deployments, and in turn driving out operational risk.

It’s worth noting that Windows containers could work well on
the web application tier. However, because Windows containers
are still in an early stage of general acceptance, we do not
recommend it here.

Both of the preceding options move from runtime configuration
management to build-time infrastructure artifacts, a crucial step
towards the next stage of software engineering adoption--test
automation and faster deployment times.

CREATING BUILD-TIME
INFRASTRUCTURE ARTIFACTS

17

Design:
• Refactoring of the blueprint in stage 6 to use a build
 artifact management.

Build and Deploy: 0.75X
• Evaluate the beginning of runtime configuration in the blue-

print for the web, database, and load balancer, identifying
common procedures that are performed on every server.
These procedures typically represent best practices, such as:
updating the operating system, installing agents, and running
scans.

• Refactoring these common operations into a standard OS
image or VM template (sometimes called a golden image)

 can reduce the amount of runtime configuration, allowing
faster deployment.

• Estimating an average 25% savings, but it can be as much
 as 90% in some cases.

Development: 3X
• 1.5X Create a simple file share or artifact repository to store
 a base OS image

• 1.5X Manually create a golden image every week; publish
 it to the repository; update the blueprint to use this new

golden image.

MTTR: 1X
• Remediation can be as simple as a new deployment
 and cutover.

Benefits:
• Deployments are faster and push button.

• Easy to update base operating system and security patches
and roll out with next deployment.

• Easy to test new deployments and operating models by
adjusting the blueprints and rebuilding with a push button.

Disadvantages:
• Further build time optimization is possible, see the next stage.

• Not containerized yet for further deployment acceleration.

0808

18

In this step we discuss how you can use blueprints and test
automation to achieve continuous integration, delivery, deploy-
ment, and operations. The blueprint from stage 7 can be cloned
and refactored to accept runtime arguments to the VM or
container artifacts. A build system script or build job can call
the blueprint to orchestrate the new artifacts for Continuous
Integration (CI) of these artifacts, verifying that they can be
deployed and pass the build. Typically, a developer thinks of the
build system as the source of truth for how to deploy an applica-
tion, but complex deployments require both an orchestrator and
operational testing of the application lifecycle.

You can also test application integration and, if successful,
promote the artifacts to an environment, thereby achieving
Continuous Delivery. Finally, with extensive test automation,
the system can automatically repeat the deployment and
promote the candidate artifacts to run in production to
achieve Continuous Deployment.

CONTINUOUS INFRASTRUCTURE INTEGRATION,
DELIVERY, DEPLOYMENT, AND OPERATIONS

Blueprints can host many different sorts of operations, including
testing application integration from an operational as well as
a functional standpoint. For example, continuous operations
requires capacities such as automated problem remediation.
You can use the blueprints to test for this capacity by injecting
infrastructure faults or failures in a safe and controlled manner.
The goal is to ensure the availability of a delegated, lights-out,
self-healing application experience. In contrast to traditional
operations, which require humans touching gear in the data-
center to remediate, you can secure zero-touch, guaranteed
uptime and reliable operational maintenance.

19

Design:
• Leveraging a build system to create and store a build each

server artifact (LB, DB, Web) and call a new blueprint to use
these artifacts.

Build and Deploy: 0.25X
• Refactoring installation and general configuration operations

into a standard OS image or VM template (sometimes called
 a Golden Image) per server artifact can reduce the amount
 of final run-time configuration, allowing faster deployment.

• Estimating an average 75% savings, but it can be as much
 as 99% in some cases.

Development: 13X
• 2X stand up and pilot a simple build system or service
 (such as Jenkins)

• 2X create and configure a simple build job named
 “Golden Image”
 – Download, patch the latest operating system, apply any

 other common operations and facilities to a VM, and test.
 – Snapshot the VM and publish the VM artifact to the
 repository and test.
 – This step can be skipped if you simply use the build

 system as your artifact repository, but that will incur
 storage overhead unless you regularly purge old builds

• 2X leverage a source code repository (such as Git, Github,
 or Gitlab) to store your “Golden Image” build job code and

optionally use a web hook to trigger the build job for every
code commit change and test.

• 2X extend the “Golden Image” build job to call a modified
“Web Application-Golden Image” blueprint with the latest
build artifact location:

 – Clone the existing Web Application blueprint and rename
 it to “Web Application-Golden Image”
 – Refactor the blueprint to accept the build artifact location
 as a runtime argument.
 – Update the “Golden Image” build job to call the “Web

 Application-Golden Image” blueprint and test.

• This completes the updated VM golden image and blueprint
consumption exercise to achieve a continuous integration

 and delivery scenario.
 – Further optimization for deployments can be made by
 making specific DB, Web, and LB golden images; the next

 steps enable this optimization.

• 5X create a parallel CI/CD pipeline with optimized deployment
utilizing one meta-build job for three artifacts and a modified
blueprint to consume those three artifacts:

 – Clone the existing “Web Application-Golden Image” blue-
print, rename it to “Web Application-Multiple Golden Images”
and modify the blueprint:

 – Modify it to accept three build artifact locations as run-time
 inputs: one for the web, database, and load balancer.

 – In the following steps, pull some of the installation proce-
 dures out of the build artifact blueprint and moving those
 procedures to each build individual web, database, and

 load balancer artifact build job to shift work from run-time
 deployment to build-time.

 – While the following appears to be three times the work,
 it isn’t because it refactors existing work already created
 in the blueprint.
 – The new “Web Application-Multiple Golden Images”
 blueprint will retain any final configuration stages and

 starting of the server that cannot exist at build time.

• Localize a build job for the web server artifact:
 – Copy the OS prototype build job and rename it to include

 “web server artifact.”
 – Add installation and generic configuration of the web
 server by moving some of the functionality from the
 “Web Application-Golden Image” blueprint to the build job.
 – Adjust publishing the web server artifact to a repository
 and test.

20

• Localize a build job for the database server:
 – Copy the OS prototype build job and rename it to include

 “database server artifact.”
 – Add installation and generic configuration of the database

 server by moving some of the functionality from the “Web
 Application-Golden Image” blueprint to the build job.

 – Adjust publishing the database server artifact to a repository.

• Localize a build job job for the load balancer server:
 – Copy the OS prototype build job and rename it to include

 “load balancer server artifact.”
 – Add installation and generic configuration of the load

 balancer server by moving some of the functionality from
 the “Web Application-Golden Image” blueprint to the build
 job.

 – Adjust publishing the load balancer server artifact to
 a repository.

• Create a new build job called “web app artifact build
 and deploy:”
 – This will be a meta build job; it will call each of the three new

 artifact build jobs for DB, Web, and Load Balancer, capture
 each of the artifact published locations, and call the “web
 application with build artifacts” blueprint with the three
 artifact locations.

 – In this manner, one can update each artifact build job
 independently without tampering with the others.

 – Alternatively, the three artifact blueprints could be
 composed into this as a monolithic build job, but
 that would not be a modular approach, so it is not
 advised as a best practice.
 – Test and fix the build job and blueprint until
 everything works properly!

MTTR: 0.5X
• Repair and updates can be a redeployment of the web
 and load balancer = .25X

• Database repair and updates require longer times and
 procedures outside the scope of this exercise, so the
 MTTR average is raised to 0.5X

Benefits:
• Multiple pipelines of progressive continuous integration
 and delivery scenarios which decrease deployment time
 and MTTR

• Continuous integration of the Golden Image with a build job

• Continuous delivery of the Golden Image with a blueprint
 for testing

• Composure of Golden Image into specific DB, Web, LB build
artifacts for faster run-time deployment and configuration.

• Meta-build job of all three golden image artifacts enables
decomposure into specific artifact jobs that can iterate
independently of each other.

• Build jobs can be triggered by build server users ad-hoc
 or by check-in to update a job.

Disadvantages:
• Not containerized yet for further deployment acceleration.

0909

21

The next stage is to expand deployments to multiple providers.
This is yet another refinement of the blueprint to ensure that
one can deploy and blend workloads across on-prem and off-
prem infrastructure offerings, achieving a hybrid cloud stance.
Most importantly, the business must retain a consistent gover-
nance and operational model so that workloads can meet fiscal
and customer performance service level objectives, no matter
where the workload lands.

You can clone and refactor the blueprint from stage 8 for parallel
deployments to multiple hypervisors, public clouds, and data-
centers. You can also schedule and orchestrate a mixture of VMs
and containers into Kubernetes pods for hybrid deployments
across multiple clouds, supporting teams at different stages of
container maturity. This flexibility allows all of the infrastructure
market to compete for your business service level agreements.
Freedom of choice among vendors empowers you to not only
select the best products and services, but the optimal fiscal
and operational models.

This was a key finding from Accelerate: State of DevOps 2019,
where “the highest performing teams were 24 times more likely
than low performers to execute on all five capabilities of cloud
computing.“

ENTERPRISE, HYBRID, AND
MULTICLOUD DEPLOYMENTS

https://services.google.com/fh/files/misc/state-of-devops-2019.pdf

22

Design:
• A copy of the “Web Application-Golden Image” blueprint

clones the web tier and localizes it for a second provider.

• If the current load balancer can route over the network to
 the second provider web-tier instances, it can load balance

between both infrastructure providers.

Build and Deploy: 0.25X
• Parallel deployments of golden images across multiple

providers can preserve the optimized deployment time
 from stage 8.

Development: 2X
• Clone the “Web Application-Golden Image” blueprint and

rename it “Web Application-Golden Image-Multiple Providers”

• Copy the web tier in the blueprint, localize it to provision an
equivalent golden image as a VM in the second provider,

 and ensure the VM instances are publically available so
 that the load balancer in the original provider can route
 over the network to these new provider VM instances.

• Update the load balancer with the network address of
 these new VM instances and test.

MTTR: 0.25X
• Database repair still keeps MTTR average at 0.25X
 because it hasn’t been redesigned.

Benefits:
• Designing the web tier for failure allows it to be distributed

among multiple infrastructure providers, providing better
resilience and guarding against any single pet provider’s
inevitable failure.

• A new infrastructure provider can be tested easily once
 a blueprint deployment scenario has been enabled.
 – This can be repeated for additional providers, datacenters,

 availability zones, and competitors.

Disadvantages:
• Health checks of web-tier instances should be automated

through monitoring for removal and restoral operations
 to make this a self-healing, scalable web-tier.

• Advanced operations and configuration for replication
 and failure+restoral reconciliation between multiple
 database instances is outside the scope of this exercise,
 but it is another important design consideration.

1010

23

The final refinement of the blueprint from stage 9 would be to
clone and augment it with global load balancing among the
different providers. Adding monitoring, metrics, and logs allows
one to heuristically trigger autoscaling workloads with load-
balancing operations. Zero-click operations give you a self-
healing, anti-fragile business with “continuous operations.”
At this stage you have global application deployment and load
balancing, driven by business-focused key performance indica-
tors, service level agreements, and operational health that scale
hybrid workload populations up and down across the world
automatically. Your applications are highly available, performant,
and close to your customers when they need them.

Design:
• A copy of “Web Application-Golden Image-Multiple Providers”

blueprint will be extended with monitors to enable advanced
operating modes of autoscaling and healing.

Build and Deploy: 0.25X
• Parallel deployments of golden images across multiple

providers can preserve the optimized deployment time
 from stage #8

Development: 12X
• Clone the “Web Application-Golden Image-Multiple Providers”

blueprint and name it “Web Application-Golden Image-Multiple
Providers-Autoscale” blueprint

• 2X: Add Load Balancer service configuration to inspect the
current population of the web tier VMs (across all providers)
with a basic monitor to remove failed instances.

 – HTTPS response on the expected port is a typical health
 monitor available in most load balancers.

• 3X: Pilot a basic monitoring server or SaaS with an API for
creating and deleting health checks of CPU load on a VM.

• 7X: Update the “Web Application-Golden Image-Multiple
Providers-Autoscale” blueprint operations:

HEURISTIC-DRIVEN OPERATIONS

 – 1X Create and configure a generic CPU load agent
 in the golden image build job.
 – 1X Update the blueprint with monitoring service end-
 point and credentials, configure a runtime update to
 the configuration for the monitoring service for CPU
 load on web-tier VMs for each provider.
 – 2X Create a monitoring policy to contact the appropriate

 provider web-tier operation in the blueprint to scale-out
 the web-tier by one VM, never exceeding 4 VMs (or your

 business policy), when any web-tier VM in the provider
 reaches > 80% load for more than two cycles.

 – 1X Create a monitoring policy to contact the appropriate
 provider web-tier operation in the blueprint to scale-in

 the web-tier by one VM, always leaving at least one VM,
 when any web-tier VM in the provider reaches > 80% load
 for more than two cycles.

 – 2X Create an operational procedure in the blueprint to
 generate 100% CPU load for 3 health check periods a
 web-tier VM for each provider to test scale-out and

 scale-in.

MTTR: 0.1X
• Repair can be removing failed web instances from the load

balancer, which can be automated with periodic, basic health
checks. The period could be 0.01X for web health check and
MTTR.

• Database repair still keeps MTTR average at 0.25X because
 it hasn’t been redesigned.

Benefits:
• Auto scaling and healing web tier driven by health monitors

across multiple providers.

Disadvantages:
• To prevent any pet load balancer or pet infrastructure provider

instance failure, it is still necessary to provide global load
balancing to “herd” the infrastructure providers.

24

This ebook has shown the successive stages of a relentless pursuit to improve
application architecture, infrastructure architecture, and operational excellence
--all in the name of delivering business value. The path toward DevOps and
agile practices can be arduous, as it requires removing traditional operational
designs and constraints. Even so, it delivers a wide range of benefits at every
step of the way. By the time you reach the 10th step, however, you will have
achieved the following improvements:

1. Decreased deployment time:
• Reduced to one quarter (0.25X) of the initial effort in stage 1

• Deployment moved from VMs to artifacts to become simpler, deterministic,
 and reproducible operations

• Avoided the lift and shift trap!

2. Improved uptime:
• Allowing maintenance and tolerating some failures

• Distributing risk and removing single points

3. Improved time to market:
• Continuous delivery through automation removes human effort and errors,
 while improving agility

• Initial delivery can be to internal customers, such as for development, testing,
 and staging environments

• Automated guardrails can enable continuous deployment to production
 and external customers

4. Mean Time to Repair (MTTR):
• Decreased to nearly nothing; one fifth (0.1X) of the initial MTTR (0.5) in stage 1

• Quickly remedy any mistakes found in production by deploying previous artifact versions

READY TO BECOME
AN INFRASTRUCTURE

DEVELOPER?

25

5. Global load-balanced infrastructure:
• Eliminate every single point of failure, moving to an active-
 active operational model for business uptime and continuance

in case of disaster

• This strategic advantage enables all vendors to compete for
your business service-level agreements and key performance
indicators

• A choice of provider models can enable fiscal blended models
of capital and operational expenditure

STAGE DEPLOY AND DEVELOPMENT MTTR SECTION TITLE

1 1 0.5 The Monolithic in Production

2 1.5 0.75 Separate, Monolilthic Functions

3 6 3 Load Balancing for Uptime

4 1 4 0.5 Application Automation
and Orchestration

5 1.5 10 1.5 Synthesis with Scripting:
Push Button Environments

6 1.5 11 1.5 Configuration Management:
Shell Scripting on Steroids

7 0.75 3 1 Creating Build-Time Infrastructure
Artifacts

8 0.25 13 0.5 Continuous Infrastructure Integration,
Delivery, Deployment, and Operations

9 0.25 2 0.25 Enterprise, Hybrid, and Multicloud
Deployments

10 0.25 12 0.1 Heuristic-Driven Operations

This table lets you see at a glance
the changes in development time
at each stage with corresponding
deployment and MTTR benefits.
What’s clear is that the transition

from a traditional, hand-built,
monolithic single environment to

ephemeral, on-demand, hybrid,
multicloud continuous applica-
tion deployments constitutes a

radical transformation that
facilitates rapid innovation and

delivery of customer value.

6. Business key performance indicators drive
 automated operations:
• Dynamically scale capacity up or down, and in or out, based

upon measured customer experience and demand

• Employees drive better automation and predictive intelligence
into business operations, away from hands-on remediation

 and reactive operations to emergencies

• Improvements can be tested on a small sampling of the
customer population before full roll-out.

In the end, we all want our business to work as aggressively and efficiently as
the webscale giants, but the prescription has been unclear. In this eBook, we have
presented concrete steps to start refactoring your business, applications, opera-
tions, and, indirectly, your culture to move toward a data-driven, experimental
way of growing and improving your business. When done right, DevOps delivers
continuous innovation and operations at scale, anywhere in the world.

If you are just beginning your DevOps journey, visit Nutanix.com to learn about how
you can modernize your datacenter with revolutionary technologies like hyper-
converged infrastructure (HCI). The HCI-based Nutanix Enterprise Cloud eliminates
infrastructure silos and frees you from relying on tightly coupled, hand-built “pet”
servers maintained by “pet” IT specialists. Nutanix web-scale architecture delivers
always-on availability and resilience with a distributed “herd” of servers.

And it’s so easy to use that IT generalists can conduct formerly time-consuming
and complex operations like managing, scaling, automating, and troubleshooting
IT infrastructure with a single-click.

Nutanix HCI provides a foundation to modernize self-service, on-demand, global
delivery of applications on multiple invisible compute providers anywhere. Nutanix
is designed for ephemeral, hybrid, multicloud IT, which simultaneously fosters
vendor competition for your business across any consumption model, while also
eliminating single points of failure. Most importantly, IT can now easily rise above
infrastructure to deliver true continuity for the entire business stack, achieving
much higher efficiencies and better outcomes than ever before.

If you’re already on the DevOps path toward non-disruptive, continuous innovation
and operations, then check out Nutanix.dev, which includes an array of resources,
ranging from labs, working scripts and example apps, official documentation for
Nutanix APIs, developer community blogs, events, and more.

https://www.nutanix.com/en
https://www.nutanix.com/en
https://www.nutanix.dev/

